第三届连接技术研讨会
智数汽车大数据锦湖日丽原材料麦克恒通汽车轻量化在线
查看: 141|回复: 0

[原创] 新型电动汽车车架轻量化优化设计

[复制链接]
发表于 2020-5-14 09:38:03 | 显示全部楼层 |阅读模式

亲,赶快注册吧,有更多精彩内容分享!

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
关键词:电动汽车;车架;轻量化;优化设计;遗传算法;有限元分析0 引言
面对环境和资源的双重压力,具有清洁、能量转换高效等优点的电动汽车,已成为汽车发展和生产的重要组成部分。研究发现,降低电动汽车质量对增加续驶里程和降低耗能有明显的作用,质量减少100kg,行驶里程将增加1.2%,百公里耗能减少1.6%[1]。车架是汽车的受力基体[2],因此,电动汽车车架轻量化十分重要。
目前电动汽车车架多由经验设计所得,然后根据使用情况和软件分析结果等进行优化,从而得到较完善的车架[3]。设计与优化过程耗时长、成本高、效率较低,车架分析内容往往局限于强度、刚度和模态三个方面,优化研究引入现代优化算法比较缺乏。车架优化方法通常有尺寸优化、拓扑优化和结构优化等。现代优化算法主要有模拟退火算法、神经网络优化算法、遗传算法和蚁群算法等[4],适用于不同的应用场合。其中,遗传算法具有并行、通用、简单、稳健和全局优化能力较强等优点[5],尤其在解决非线性、多峰值的优化问题时具有独到的优势。
综合以上车架发展现状和遗传算法特点提出如下轻量化优化设计思路:根据车架承受的载荷和长度,应用遗传算法(Genetic Algorithm,GA)对车架主要部件纵梁进行尺寸优化,以得到满足刚度、强度和稳定性的最优尺寸,然后完成其余部件的设计。该思路可以直接确定主要杆件纵梁的截面尺寸,具有省时高效的优点,可以达到快速开发、兼顾设计与轻量化的目的。
1 车架匹配参数设计
欲设计一种适合于城市道路的低速两座新型电动汽车车架,采用梯形与桁架式结合的结构形式,车架全长2120mm、宽1080mm,纵梁所用材料为Q235,其力学特性如表1所示,表2为目标车架所承受的载荷,其中Y方向同后文图3所示。
表1 Q235的主要性能参数
8c9cb4236750e0bd1f372f44668daec7.jpg
表2 车架承受的载荷
49b7e8ec3a02c62dd641bc9b0f7d7ca4.jpg
2 车架纵梁优化2.1 数学模型
2.1.1 设计变量
在机械设计问题中,对某结构进行优化设计时,可以通过改变构件形状、尺寸和位置等以达到优化目的。目标车架纵梁是保证车架安全性,控制车架成本的关键,所以本文将纵梁截面尺寸x1和x2作为设计变量,如图1所示,设计变量各参数如表3所示。
表3 车架纵梁优化变量
0e19c4e0317a533db2d11ee4362d716c.jpg
520682e08dc917abf32d301c3f2a8483.jpg
图1 纵梁截面

2.1.2 约束条件
由设计变量x1、x2的边界条件,则有:
7d644d6d00e1e9a7d07ef5a8c5d88567.jpg
在追求轻量化时,必须使车架具有足够的强度和刚度以承受整车的载荷和外部冲击,以确保车辆使用时安全可靠[6~8],即:
e585f251ea2d15d09a829ebe51001c1e.jpg
式(3)中, 94d18476ee12785def9cac622e172c93.jpg ,1.4为安全系数,最大弯曲应力可通过下式计算:
88815eecce715a17fff378ab11a52223.jpg
式(4)中,Mmax=1.88×106N/mm,则有:
3a9d7010f90f3bed1450c9883eb2fa5e.jpg
纵梁的最大挠度应小于等于许用挠度,即:
9e21246a879979a7790ae62ed0cc03f1.jpg
式(7)中, 1a515115d91b1ef3004309ab09a3040b.jpg ,a为车架长度,最大挠度可通过下式计算:
35801c4108c15c0435005d86ad00e45c.jpg
式(8)中,F为车架单根纵梁所受的载荷,F=4700N,则有:
7af4fd31668b12802a42f8adee799d07.jpg
车架纵梁的最大弯曲应力应小于或等于屈曲临界稳定应力,即:
145e1c751659dc969c21642660edc525.jpg
屈曲临界稳定应力可通过下式计算:
090d8e48598c027627434006a29d4d0f.jpg
则有:
6a30564eb66ff6c434a3d9d243923e8b.jpg
2.1.3 目标函数
优化目标是降低车架重量,通过寻找纵梁的最优截面面积来降低总体积,从而达到降低车架重量的目的,则目标函数为:
c8adba6197bc4ad75329d571b092cffd.jpg
式(13)中,f(x)为单根车架纵梁重量;ρ、A、L分别为车架纵梁的密度、横截面积以及有效长度。
2.2 基于MATLAB的遗传算法实现
MATLAB软件提供有遗传算法工具箱,通过遗传算法工具箱可以解决部分传统优化技术难以解决的问题。针对目标车架纵梁优化问题,可通过以下步骤实现:
Step1:编写目标适应函数程序fitness.m;
Step2:编写约束程序constraint.m;
Step3:通过命令行操作打开MATLAB优化工具箱;
Step4:选择遗传算法工具箱,输入优化变量个数以及上下限,部分参数设定如表4所示,其余参数为默认设定;
Step5:选择输出最优适应函数值Best fitness和最优个体Best individual。
表4 遗传算法部分参数设定
df82937147f712da0ee454720ebab7fd.jpg
2.3 优化结果
经过5次迭代优化,得到结果如图2所示,将x1圆整后取3mm,x2圆整取76mm,车架纵梁优化前后各参数对比如表5所示。
表5 纵梁优化前后各参数对比
224a2523a987c4c149688ad68b551e82.jpg
从表5中可以看出,优化后的纵梁截面面积较优化前减少了3.5%。易验证优化后的设计变量满足约束条件。
3 建立车架有限元模型
利用有限元法对处于设计阶段的车架刚度、强度进行准确的分析和预测已经成为车架结构分析的重要手段[9,10]。通过有限元分析可以了解车架在各种工况下的应力分布和变形情况,为车架的优化提供依据。
目前,电动汽车多由方钢和角钢焊接而成[11]。考虑到目标电动车载重较大,全部使用方钢,材料选择Q235,材料特性如表1所示。建立经验设计所得的车架1和优化设计所得的车架2。在Workbench中设置好材料属性,因为车架各部件之间采用焊接连接,为刚性连接,故将零件之间的接触类型设置为Bonded,单元尺寸控制为5mm,采用自动网格划分,车架1共产生133464个单元、883400个节点,车架2共产生133896个单元、879256个节点。得到车架有限元模型如图3所示。车架1、2的有限元模型较为相似,故此处仅例举其一。
4 车架有限元分析4.1 分析准备
汽车在行驶过程中,由于路面不平、制动和转弯等情况和操作,将会形成不同的工况,车架的受力情况也不同,其中弯曲工况和弯扭工况对车架结构的影响较大[12]。
6212f2c432d0d795d7707bed187e8f75.jpg
图2 纵梁优化结果

36804257aa9e52597b348f8da8e735fb.jpg
图3 车架有限元模型

考虑到车辆运行时动载荷对车架的影响,通常引入一个动载系数来校核车架应力以及变形,在对车架进行有限元分析时将载荷乘以动载系数施加在相应部位。动载系数与车速、汽车的结构参数(如轮胎刚度、悬架刚度、汽车质量分布)和道路条件等有关[13],目标车架适用的车辆车速较低但重量较大,且弯曲工况为主要工况,故选动载系数为1.5;主要在城市道路行驶,存在扭转工况的情况较少,故选扭转工况的动载系数为1.1。
4.2 弯曲工况
弯曲工况主要是模拟车辆在满载状态下,在水平的良好路面上行驶时应力分布和变形情况。由此,约束前悬架与车架接触位置的平动自由度X、Y、Z,释放转动自由度ROX、ROY、ROZ;约束后悬架与车架接触位置的平动自由度Y,释放平动自由度X、Z和转动自由度ROX、ROY、ROZ。加载求解后得如图4(a)、图4(b)所示的弯曲工况车架变形图;图4(c)、图4(d)所示的车架应力图。
结果分析:
1)由图4(a)、图4(b)可知,在满载情况下,车架的变形主要出现在车架中部和后部,车架1最大值为0.42mm,车架2为0.61mm,远小于许用的变形量5.3mm,则目标车架弯曲刚度较好。
2)由图4(c)、图4(d)可知,车架的绝大部分应力较小,车架1最大应力96.90MPa,车架2为113.59MPa,由国标GB 50316-2000可知在常温下Q235材料的屈服极限为235MPa,即在弯曲工况下车架的应力满足要求。
0179d978099ccfa89a3f2bc259888dbe.jpg
ee278c6a3f099a39a11e16d1f66d7ff3.jpg
图4 优化前后车架弯曲工况对比

4.3 扭转工况
扭转工况主要分析车架抵抗扭转变形的能力,多发生在崎岖不平的路面上,不平的路面会使得车架左右纵梁的受力不均。由此,约束右前悬架与车架接触位置的平动自由度X、Y,释放平动自由度Z和转动自由度ROX、ROY、ROZ;约束后悬架与车架接触位置的平动自由度Y,释放平动自由度X、Z和转动自由度ROX、ROY、ROZ;释放左前悬架与车架接触位置的平动自由度X、Y、Z和转动自由度ROX、ROY、ROZ,即模拟左前轮悬空的状态。加载求解后得如图5(a)、图5(b)所示的弯扭工况车架变形图;图5(c)、图5(d)所示的车架应力图。
32fffaf2b3f58d58cb143bdbd472fb45.jpg
图5 优化前后车架扭转工况对比

结果分析:
1)由图5(a)、图5(b)可知,在满载情况下,车架的变形主要发生在车架左前端,车架1其最大值为3.16mm,车架2为4.62mm,小于许用变形量。
2)由图5(c)、图5(d)可知,车架的绝大部分应力值较小,车架1最大应力为144.78MPa,车架2为196.85Mpa,低于许用应力值。
5 结论
1)车架1的重量为94.333kg,车架2的重量为75.945kg。轻量化优化设计实现了车架自重的降低,减重比例达19.5%。
2)对车架1、2有限元模型进行了弯曲和弯扭工况下的变形和应力分析,车架1最大变形为3.16mm,车架2为4.62mm;车架1最大应力为144.78MPa,车架2为196.85MPa。虽然应力和变形有所增加,但仍然满足材料使用和设计要求,且实现了车架轻量化的优化设计目的。
3)由2)中应力和变形对比可知,车架1轻量化优化空间大,车架2轻量化优化空间小,体现了该优化设计思路兼顾寻优的特点。
4)优化仅经过了5次迭代就得到最优结果,表明遗传算法对有车架优尺寸优化具有很好的收敛性,适合于刚、强度等非线性约束问题的求解。
参考文献:
[1] 徐建全,杨沿平,唐杰,陈轶嵩,殷仁述.纯电动汽车与燃油汽车轻量化效果的对比分析[J].汽车工程,2012,34(06):540-543.
[2] 陆秋懿,郑再象,许鹏,王凯强,张振越.YD6120型纯电动城市客车车架有限元分析[J].机械设计与制造工程,2018,47(01):58-60.
[3] 李晓刚,赵爱民.基于模糊理论车架优化强度-质量合理性分析[J].机械设计与制造,2017(12):14-18.
[4] 陈立周,俞必强.机械优化设计方法[M].4版.北京:冶金工业出版社,2014.1,125-147.
[5] 张军,林程,张国明.基于遗传算法的客车车身骨架优化设计[J].北京理工大学学报,2008(01):45-49.
[6] 尹安东,龚来智,王欢,徐俊波.基于HyperWorks的电动汽车车架有限元分析[J].合肥工业大学学报(自然科学版),2014,37(01):6-9,77.
[7] 高建树,陈伟强,刘浩,诸葛晶昌.电动行李牵引车动力参数匹配与车架设计[J].机械设计与制造,2016(10):222-226.
[8] 于国飞.基于有限元的全承载式客车车身强度刚度分析[J].客车技术与研究,2010,32(04):14-16.
[9] 樊晓冬.重型自卸车车架的拓扑结构设计与轻量化方法研究[D].中北大学,2017.
[10] 冯金芝,邓江波,郑松林,李原.基于材料替换的轿车副车架设计方法[J].汽车工程,2016,38(06):778-782.
[11] 杨卓.低速纯电动汽车车架的轻量化研究[D].华南理工大学,2014:5-6.
[12] 杨莹,张专元.基于ANSYS Workbench的货车车架有限元分析[J].农业装备与车辆工程,2013,51(12):12-15.
[13] 杨春兰,张亚丽,黄伟,李燊.新型电动汽车车架结构分析及优化设计[J].机械设计与制造,2017,(06):234-237.

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则